Computer science lessons in Douala

Find your perfect private computer science tutor in Douala.
Learn computer science with our teachers at home or in their studio.

0 teachers in my wish list

3 computer science teachers in Douala

Meet even more great teachers. Try online lessons with the following real-time online teachers:
Trusted teacher: Digital suites courses I - General A numeric sequence is an application from N to R. • Bounded sequence A sequence (Un) is bounded if there exists a real A such that, for all n, Un ≤ A. We say that A is an upper bound of the series. A sequence (Un) is reduced if there exists a real number B such that, for all n, B ≤ one. One says that B is a lower bound of the sequence. A sequence is said to be bounded if it is both increased and reduced, that is to say if it exists M such that | Un | ≤ M for all n. • Convergent suite The sequence (Un) is convergent towards l ∈ R if: ∀ε> 0 ∃n0 ∈ N ∀n ≥ n0 | un − l | ≤ ε. A sequence which is not convergent is said to be divergent. When it exists, the limit of a sequence is unique. The deletion of a finite number of terms does not modify the nature of the sequence, nor its possible limit. Any convergent sequence is bounded. An unbounded sequence cannot therefore be convergent. • Infinite limits We say that the following (un) diverges Towards + ∞ if: ∀A> 0 ∃n0∈N ∀n ≥ n0 Un≥A Towards −∞ if: ∀A> 0 ∃n0∈N ∀n≤ n0 Un≤A. • Known limitations For k> 1, α> 0, β> 0 II Operations on suites • Algebraic operations If (un) and (vn) converge towards l and l ', then the sequences (un + vn), (λun) and (unvn) respectively converge towards l + l', ll and ll '. If (un) tends to 0 and if (vn) is bounded, then the sequence (unvn) tends to 0. • Order relation If (un) and (vn) are convergent sequences such that we have a ≤ vn for n≥n0, then we have: Attention, no analogous theorem for strict inequalities. • Framing theorem If, from a certain rank, un ≤xn≤ vn and if (un) and (vn) converge towards the same limit l, then the sequence (xn) is convergent towards l. III monotonous suites • Definitions The sequence (un) is increasing if un + 1≥un for all n; decreasing if un + 1≤un for all n; stationary if un + 1 = one for all n. • Convergence Any sequence of increasing and increasing reals converges. Any decreasing and underestimating sequence of reals converges. If a sequence is increasing and not bounded, it diverges towards + ∞. • Adjacent suites The sequences (un) and (vn) are adjacent if: (a) is increasing; (vn) is decreasing; If two sequences are adjacent, they converge and have the same limit. If (un) increasing, (vn) decreasing and un≤vn for all n, then they converge to l1 and l2. It remains to show that l1 = l2 so that they are adjacent. IV Extracted suites • Definition and properties - The sequence (vn) is said to be extracted from the sequence (un) if there exists a map ϕ of N in N, strictly increasing, such that vn = uϕ (n). We also say that (vn) is a subsequence of (un). - If (un) converges to l, any subsequence also converges to l. If sequences extracted from (un) all converge to the same limit l, we can conclude that (un) converges to l if all un is a term of one of the extracted sequences studied. For example, if (u2n) and (u2n + 1) converge to l, then (un) converges to l. • Bolzano-Weierstrass theorem From any bounded sequence of reals, we can extract a convergent subsequence. V Suites de Cauchy • Definition A sequence (un) is Cauchy if, for any positive ε, there exists a natural integer n0 for which, whatever the integers p and q greater than or equal to n0, we have | up − uq | <ε. Be careful, p and q are not related. • Property A sequence of real numbers, or of complexes, converges if, and only if, it is Cauchy SPECIAL SUITES I Arithmetic and geometric sequences • Arithmetic sequences A sequence (un) is arithmetic of reason r if: ∀ n∈N un + 1 = un + r General term: un = u0 + nr. Sum of the first n terms: • Geometric sequences A sequence (un) is geometric of reason q ≠ 0 if: ∀ n∈N un + 1 = qun. General term: un = u0qn Sum of the first n terms: II Recurring suites • Linear recurrent sequences of order 2: - Such a sequence is determined by a relation of the type: (1) ∀ n∈N aUn + 2 + bUn + 1 + cUn = 0 with a ≠ 0 and c ≠ 0 and knowledge of the first two terms u0 and u1. The set of real sequences which satisfy the relation (1) is a vector space of dimension 2. We seek a basis by solving the characteristic equation: ar2 + br + c = 0 (E) - Complex cases a, b, c If ∆ ≠ 0, (E) has two distinct roots r1 and r2. Any sequence satisfying (1) is then like : where K1 and K2 are constants which we then express as a function of u0 and u1. If ∆ = 0, (E) has a double root r0 = (- b) / 2a. Any sequence satisfying (1) is then type: - Case a, b, c real If ∆> 0 or ∆ = 0, the form of the solutions is not modified. If ∆ <0, (E) has two conjugate complex roots r1 = α + iβ and r2 = α − iβ that we write in trigonometric form r1 = ρeiθ and r2 = ρe-iθ Any sequence satisfying (1) is then of the type: • Recurrent sequences un + 1 = f (un) - To study such a sequence, we first determine an interval I containing all the following values. - Possible limit If (un) converges to l and if f is continuous to l, then f (l) = l. - Increasing case f If f is increasing over I, then the sequence (un) is monotonic. The comparison of u0 and u1 makes it possible to know if it is increasing or decreasing. - Decreasing case f If f is decreasing over I, then the sequences (u2n) and (u2n + 1) are monotonic and of contrary Made by LEON
Math · Physics · Computer science
A highly experienced, diligent, qualified teacher with 10 years of teaching experience at The Liverpool Blue Coat School. Voted the best school in the country in 2016 by The Times. Providing student-led lessons focused on student expectations, confidence building, and developing an understanding with proven results. Comprehensive experience and knowledge of every school in the Liverpool area and awareness of each Maths department`s pedagogy and therefore am able to develop strategies to complement students' development. Consistent development of teaching style and consistently reflecting and making adjustments with an open discussion policy with students to ensure content is delivered and understood by the student. Online lessons take place on bespoke software suitable for our teaching and learning style. Lessons can be integrated with current school lessons or develop our own learning objectives. Quickly identify student`s strengths and weaknesses develop a plan to effectively use lesson time Discuss and rectify misconceptions using easy-to-remember analogies that students can relate to Build confidence/mindset/develop resilience/pattern recognition/many other aspects of psychology High expectations of students for their organisation/personal development/lesson feedback Student lead lessons/differentiation through challenging but rewarding question selection Relating questions to students interests and hobbies to develop an engaging relationship with students Diet/hydration/stress management/organisation/exam time management Question analysis/priority/marking/annotation/language/layout Bespoke assessment frameworks whereby students develop an unrivaled understanding for exam structure, question construction and their complexity. Enabling students to independently break down questions and apply their understanding Develop students ability to effectively communicate their written answers to the examiner Understanding the mindset of an examiner and how exam scri pts are created and then marked Exam preparation/revision techniques/revision organisation/damage limitation/time management Mathematics in the real world, finance and economics (not taught by schools) Assist parents draft formal correspondence to schools and colleges. Develop parents understanding of school policies and government strategies to make informed decisions about their childs education. Excellent knowledge of all exam board curricula Comprehensive homework set every lesson to reinforce learning All qualifications are available on request, written and phone references, and lesson observation feedback also available on request.
Math · Computer science · Information technology
Showing results 1 - 25 of 7181 - 25 of 718

Our students from Douala evaluate their Computer Science teacher.

To ensure the quality of our Computer Science teachers, we ask our students from Douala to review them.
Only reviews of students are published and they are guaranteed by Apprentus. Rated 4.9 out of 5 based on 21 reviews.

Games, animations and interactive stories with Scratch (children and teenagers) (Ixelles-Elsene)
Fantastic! Ilias really prepared well and took the time to understand what my son needed. He was very positive and encouraging and we look forward to the next lesson!
Private lessons for high school students, high school, private schools and universities (Geneva)
Very knowledgeable and patient.
Review by ANNA
Private lessons in computer science for undergraduate students in computer science. (Casablanca)
Bon prof
Review by ÉPIPHANE