facebook
favorite button
1/3
super instructor icon
Professeur fiable
Ce professeur a un délai et un taux de réponse très élevé, démontrant un service de qualité et sa fidélité envers ses élèves.
member since icon
Depuis novembre 2022
Professeur depuis novembre 2022
Traduit par GoogleVoir l'original
Tuteur disponible pour la chimie, la physique, la biologie et les mathématiques pour tous les niveaux
course price icon
Àpd 107.81 CNY /h
arrow icon
Ce Cours est destiné à tous ceux qui font des cauchemars à l'approche d'un devoir de Mathématiques, Physique, Chimie ou Sciences à différents niveaux en Anglais depuis Douala Cameroun.
Ce cours est destiné aux élèves du primaire, du secondaire et de la 1ère année universitaire.
Mon but est de faire progresser l'élève par la pratique en traitant pour chaque élève la méthode qui lui correspond pour mieux comprendre.
Réponse garantie en quelques minutes jusqu'à 10 heures maximum.
Informations supplémentaires
Ayez votre matériel d'écriture avec vous.
Lieu
green drop pin icongreen drop pin icon
|
Utilisez Ctrl + molette pour zoomer !
zoom in iconzoom out icon
location type icon
Cours au domicile de l'élève :
  • Autour de Dizangué, Cameroun
location type icon
Cours chez le professeur :
  • Bonabéri, Cameroon
location type icon
En ligne depuis le Cameroun
Présentation
Je peux me décrire comme tuteur sympathique, enthousiaste et respectueux. En tant que tuteur, je peux facilement obtenir le respect de mes élèves s'ils se sentent respectés en premier. Premièrement, l'anglais est une langue et non une base d'intelligence. Je suis peut-être meilleur que mes élèves quand il s'agit de parler et de comprendre l'anglais, mais ils sont peut-être plus intelligents et talentueux que moi. Je suis enthousiaste parce que je veux que mes élèves sentent que je suis très fougueux et fidèle que je peux bien leur enseigner, ils peuvent l'adopter et ils deviendront meilleurs en ce qui concerne l'oral, l'écrit et la compréhension de la langue. Je suis sympathique parce que je veux faire sentir à mes étudiants que parler anglais peut leur permettre de partager des idées et de faire des affaires en dehors de leur pays et, grâce à cela, les opportunités qu'ils peuvent obtenir sont illimitées.
Education
Licence en Biochimie et Biologie Moléculaire à l'Université de Buéa.
Niveau GCE A- level au Lycée Bilingue de Mambanda-Bonaberi
Certificat TEFL de 120 heures obtenu.
Expérience / Qualifications
J'ai enseigné en tant que tuteur en ligne d'anglais et de français pendant 3 mois. Honnêtement, j'ai apprécié cette expérience et j'ai beaucoup appris de chacun de mes élèves. J'avais envie de comprendre chaque élève de mieux en mieux au fur et à mesure que nous progressions chaque jour. Cette expérience m'a aidé à comprendre que l'enseignement était un bon choix pour moi, et maintenant je suis motivé pour enseigner et mettre en pratique tout ce que j'ai appris. Bien sûr, je sais que j'ai encore beaucoup à apprendre et j'espère poursuivre mes études tout en enseignant. Aussi, j'ai postulé pour être tutrice à domicile pour les élèves du primaire pendant 6 mois. C'était difficile au début, parce que j'avais du mal à gérer les problèmes de discipline. Cependant, après quelques semaines, je suis entré dans le rythme et j'ai appris ce qui fonctionnait avec les enfants et comment maintenir la discipline à un niveau raisonnable au moins. C'était une période extraordinaire, et pour être honnête, les enfants me manquent toujours. De plus, je suis un tuteur d'anglais certifié, avec un certificat TEFL de 120 heures.
Age
Enfants (4-6 ans)
Enfants (7-12 ans)
Adolescents (13-17 ans)
Adultes (18-64 ans)
Niveau du Cours
Débutant
Intermédiaire
Avancé
Durée
60 minutes
90 minutes
120 minutes
Enseigné en
anglais
français
Compétences
Disponibilité semaine type
(GMT -05:00)
New York
at teacher icon
Cours chez le professeur et par webcam
at home icon
Cours à domicile
Mon
Tue
Wed
Thu
Fri
Sat
Sun
00-04
04-08
08-12
12-16
16-20
20-24
Être à l'aise pour converser avec d'autres personnes dans une autre langue, qui n'est pas notre langue maternelle, est très important et parfois vous n'avez aucune confiance en vous pour parler en public. Réservez simplement une leçon avec moi et développez la confiance dont vous avez besoin.

Pendant nos cours de conversation, je vous aiderai à améliorer votre prononciation, comment démarrer une conversation, renforcer votre confiance dans la communication en public et augmenter votre maîtrise de la langue. De plus, l'un de mes hobbies est de découvrir de nouvelles cultures, donc j'espère que vous aimerez partager votre culture avec moi.

Au cours de nos cours de vocabulaire, nous explorions différents mots, désignions un mot de la semaine avec un défi pour l'utiliser de manière créative dans le travail de cette semaine et utilisions également des blagues et des audios pour ajouter de l'engagement aux études de mots, en particulier celles à significations multiples.
Lire la suite
Cours Similaires
arrow icon previousarrow icon next
verified badge
Léon
Cours suites numériques

I – Généralités
Une suite numérique est une application de N dans R.
• Suite bornée
Une suite (Un) est majorée s'il existe un réel A tel que, pour tout n, Un ≤ A. On dit que A est un majorant de la suite.
Une suite (Un) est minorée s'il existe un réel B tel que, pour tout n, B ≤ un. On dit
que B est un minorant de la suite.
Une suite est dite bornée si elle est à la fois majorée et minorée, c'est-à-dire s'il
existe M tel que |Un| ≤ M pour tout n.

• Suite convergente

La suite (Un) est convergente vers l ∈ R si :
∀ε>0 ∃n0 ∈ N ∀n ≥ n0 |un−l| ≤ ε.
Une suite qui n'est pas convergente est dite divergente.
Lorsqu'elle existe, la limite d'une suite est unique.
La suppression d'un nombre fini de termes ne modifie pas la nature de la suite, ni sa limite éventuelle.
Toute suite convergente est bornée. Une suite non bornée ne peut donc pas être convergente.

• Limites infinies

On dit que la suite (un) diverge

Vers +∞ si : ∀A>0 ∃n0∈N ∀n ≥ n0 Un≥A
Vers −∞ si : ∀A>0 ∃n0∈N ∀n≤ n0 Un≤A.

• Limites connues

Pour k>1, α>0, β>0


II Opérations sur les suites

• Opérations algébriques

Si (un) et (vn) convergent vers l et l’, alors les suites (un+vn), (λun) et (unvn) convergent respectivement vers l + l’, ll et ll’.

Si (un) tend vers 0 et si (vn) est bornée, alors la suite (unvn) tend vers 0.

• Relation d'ordre

Si (un) et (vn) sont des suites convergentes telles que l'on ait un ≤ vn pour n≥n0,
alors on a :
Attention, pas de théorème analogue pour les inégalités strictes.

• Théorème d'encadrement

Si, à partir d'un certain rang, un ≤xn≤ vn et si (un) et (vn) convergent vers la
même limite l, alors la suite (xn) est convergente vers l.


III Suites monotones

• Définitions

La suite (un) est croissante si un+1≥un pour tout n;
décroissante si un+1≤un pour tout n;
stationnaire si un+1=un pour tout n.

• Convergence

Toute suite de réels croissante et majorée est convergente.
Toute suite de réels décroissante et minorée est convergente.
Si une suite est croissante et non majorée, elle diverge vers +∞.

• Suites adjacentes

Les suites (un) et (vn) sont adjacentes si :
(un) est croissante ; (vn) est décroissante ;

Si deux suites sont adjacentes, elles convergent et ont la même limite.

Si (un) croissante, (vn) décroissante et un≤vn pour tout n, alors elles convergent vers
l1 et l2. Il reste à montrer que l1=l2 pour qu'elles soient adjacentes.

IV Suites extraites

• Définition et propriétés

– La suite (vn) est dite extraite de la suite (un) s'il existe une application φ de N
dans N, strictement croissante, telle que vn=uφ(n).
On dit aussi que (vn) est une sous-suite de (un).
– Si (un) converge vers l, toute sous-suite converge aussi vers l.

Si des suites extraites de (un) convergent toutes vers la même limite l, on peut conclure que (un) converge vers l si tout un est un terme d'une des suites extraites étudiées.
Par exemple, si (u2n) et (u2n+1) convergent vers l, alors (un) converge vers l.

• Théorème de Bolzano-Weierstrass

De toute suite de réels bornée, on peut extraire une sous-suite convergente.

V Suites de Cauchy

• Définition

Une suite (un) est de Cauchy si, pour tout ε positif, il existe un entier naturel n0 pour lequel, quels que soient les entiers p et q supérieurs ou égaux à n0, on ait |up−uq|<ε.
Attention, p et q ne sont pas liés.

• Propriété

Une suite de réels, ou de complexes, converge si, et seulement si, elle est de
Cauchy




SUITES PARTICULIERES

I Suites arithmétiques et géométriques

• Suites arithmétiques

Une suite (un) est arithmétique de raison r si :

∀ n∈N un+1=un+r

Terme général : un =u0+nr.

Somme des n premiers termes :


• Suites géométriques

Une suite (un) est géométrique de raison q≠0 si :

∀ n∈N un+1=qun.

Terme général : un=u0qn

Somme des n premiers termes :

II Suites récurrentes

• Suites récurrentes linéaires d'ordre 2 :

– Une telle suite est déterminée par une relation du type :

(1) ∀ n∈N aUn+2+bUn+1+cUn =0 avec a≠0 et c≠0
et la connaissance des deux premiers termes u0 et u1.
L'ensemble des suites réelles qui vérifient la relation (1) est un espace vectoriel
de dimension 2.
On en cherche une base par la résolution de l'équation caractéristique :

ar2+br+c=0 (E)
– Cas a, b, c complexes
Si ∆≠0,(E) a deux racines distinctes r1et r2. Toute suite vérifiant (1) est alors
du type :
où K1 et K2 sont des constantes que l'on exprime ensuite en fonction de u0 et u1.

Si ∆=0, (E) a une racine double r0=(-b)/2a. Toute suite vérifiant (1) est alors du
type :


– Cas a, b, c réels
Si ∆>0ou ∆=0, la forme des solutions n'est pas modifiée.
Si ∆<0, (E)a deux racines complexes conjuguées r1=α+iβ et r2=α−iβ
que l'on écrit sous forme trigonométrique r1=ρeiθ et r2=ρe-iθ

Toute suite vérifiant (1) est alors du type :


• Suites récurrentes un+1=f(un)

– Pour étudier une telle suite, on détermine d'abord un intervalle I contenant toutes
les valeurs de la suite.
– Limite éventuelle
Si (un) converge vers l et si f est continue en l, alors f(l)=l.
– Cas f croissante
Si f est croissante sur I, alors la suite (un) est monotone.
La comparaison de u0 et de u1 permet de savoir si elle est croissante ou décroissante.
– Cas f décroissante
Si f est décroissante sur I, alors les suites (u2n) et (u2n+1) sont monotones et de
sens contraire




Fait par LEON
verified badge
Aurelien
Je propose des cours de mathématiques, physique et chimie à domicile pour aider les élèves à améliorer leurs compétences et leur compréhension de ces matières essentielles. Mes cours sont adaptés aux besoins spécifiques de chaque élève, en tenant compte de leur niveau actuel et de leurs objectifs d'apprentissage.

En mathématiques, je couvre un large éventail de sujets, allant des bases comme l'arithmétique et l'algèbre, jusqu'aux concepts plus avancés tels que la géométrie, les fonctions, les probabilités et les statistiques. J'utilise des méthodes pédagogiques interactives pour rendre les mathématiques plus accessibles et intéressantes pour les élèves, en utilisant des exemples concrets et des exercices pratiques.

En physique, j'enseigne les principes fondamentaux de la matière, tels que la cinématique, l'électricité, le magnétisme et l'optique. Je m'assure que les élèves comprennent les concepts théoriques tout en leur fournissant des expériences pratiques pour renforcer leur compréhension.

Je suis passionné par l'enseignement et j'ai une approche patiente et encourageante. Je m'efforce de créer un environnement d'apprentissage positif où les élèves se sentent à l'aise pour poser des questions et explorer les sujets en profondeur. Mon objectif est d'aider les élèves à développer une confiance en eux et à acquérir des compétences qui leur seront utiles tout au long de leur parcours scolaire.

Si vous cherchez un tuteur expérimenté et dévoué pour aider votre enfant à réussir en mathématiques et en physique, n'hésitez pas à me contacter. Je serais ravi de discuter de vos besoins spécifiques et de trouver la meilleure approche pour aider votre enfant à atteindre ses objectifs académiques.
Video thumbnail
Play icon
Vidéo de Diane
message icon
Contacter Diane
repeat students icon
Le premier cours est couvert par notre Garantie Le-Bon-Prof
Cours Similaires
arrow icon previousarrow icon next
verified badge
Léon
Cours suites numériques

I – Généralités
Une suite numérique est une application de N dans R.
• Suite bornée
Une suite (Un) est majorée s'il existe un réel A tel que, pour tout n, Un ≤ A. On dit que A est un majorant de la suite.
Une suite (Un) est minorée s'il existe un réel B tel que, pour tout n, B ≤ un. On dit
que B est un minorant de la suite.
Une suite est dite bornée si elle est à la fois majorée et minorée, c'est-à-dire s'il
existe M tel que |Un| ≤ M pour tout n.

• Suite convergente

La suite (Un) est convergente vers l ∈ R si :
∀ε>0 ∃n0 ∈ N ∀n ≥ n0 |un−l| ≤ ε.
Une suite qui n'est pas convergente est dite divergente.
Lorsqu'elle existe, la limite d'une suite est unique.
La suppression d'un nombre fini de termes ne modifie pas la nature de la suite, ni sa limite éventuelle.
Toute suite convergente est bornée. Une suite non bornée ne peut donc pas être convergente.

• Limites infinies

On dit que la suite (un) diverge

Vers +∞ si : ∀A>0 ∃n0∈N ∀n ≥ n0 Un≥A
Vers −∞ si : ∀A>0 ∃n0∈N ∀n≤ n0 Un≤A.

• Limites connues

Pour k>1, α>0, β>0


II Opérations sur les suites

• Opérations algébriques

Si (un) et (vn) convergent vers l et l’, alors les suites (un+vn), (λun) et (unvn) convergent respectivement vers l + l’, ll et ll’.

Si (un) tend vers 0 et si (vn) est bornée, alors la suite (unvn) tend vers 0.

• Relation d'ordre

Si (un) et (vn) sont des suites convergentes telles que l'on ait un ≤ vn pour n≥n0,
alors on a :
Attention, pas de théorème analogue pour les inégalités strictes.

• Théorème d'encadrement

Si, à partir d'un certain rang, un ≤xn≤ vn et si (un) et (vn) convergent vers la
même limite l, alors la suite (xn) est convergente vers l.


III Suites monotones

• Définitions

La suite (un) est croissante si un+1≥un pour tout n;
décroissante si un+1≤un pour tout n;
stationnaire si un+1=un pour tout n.

• Convergence

Toute suite de réels croissante et majorée est convergente.
Toute suite de réels décroissante et minorée est convergente.
Si une suite est croissante et non majorée, elle diverge vers +∞.

• Suites adjacentes

Les suites (un) et (vn) sont adjacentes si :
(un) est croissante ; (vn) est décroissante ;

Si deux suites sont adjacentes, elles convergent et ont la même limite.

Si (un) croissante, (vn) décroissante et un≤vn pour tout n, alors elles convergent vers
l1 et l2. Il reste à montrer que l1=l2 pour qu'elles soient adjacentes.

IV Suites extraites

• Définition et propriétés

– La suite (vn) est dite extraite de la suite (un) s'il existe une application φ de N
dans N, strictement croissante, telle que vn=uφ(n).
On dit aussi que (vn) est une sous-suite de (un).
– Si (un) converge vers l, toute sous-suite converge aussi vers l.

Si des suites extraites de (un) convergent toutes vers la même limite l, on peut conclure que (un) converge vers l si tout un est un terme d'une des suites extraites étudiées.
Par exemple, si (u2n) et (u2n+1) convergent vers l, alors (un) converge vers l.

• Théorème de Bolzano-Weierstrass

De toute suite de réels bornée, on peut extraire une sous-suite convergente.

V Suites de Cauchy

• Définition

Une suite (un) est de Cauchy si, pour tout ε positif, il existe un entier naturel n0 pour lequel, quels que soient les entiers p et q supérieurs ou égaux à n0, on ait |up−uq|<ε.
Attention, p et q ne sont pas liés.

• Propriété

Une suite de réels, ou de complexes, converge si, et seulement si, elle est de
Cauchy




SUITES PARTICULIERES

I Suites arithmétiques et géométriques

• Suites arithmétiques

Une suite (un) est arithmétique de raison r si :

∀ n∈N un+1=un+r

Terme général : un =u0+nr.

Somme des n premiers termes :


• Suites géométriques

Une suite (un) est géométrique de raison q≠0 si :

∀ n∈N un+1=qun.

Terme général : un=u0qn

Somme des n premiers termes :

II Suites récurrentes

• Suites récurrentes linéaires d'ordre 2 :

– Une telle suite est déterminée par une relation du type :

(1) ∀ n∈N aUn+2+bUn+1+cUn =0 avec a≠0 et c≠0
et la connaissance des deux premiers termes u0 et u1.
L'ensemble des suites réelles qui vérifient la relation (1) est un espace vectoriel
de dimension 2.
On en cherche une base par la résolution de l'équation caractéristique :

ar2+br+c=0 (E)
– Cas a, b, c complexes
Si ∆≠0,(E) a deux racines distinctes r1et r2. Toute suite vérifiant (1) est alors
du type :
où K1 et K2 sont des constantes que l'on exprime ensuite en fonction de u0 et u1.

Si ∆=0, (E) a une racine double r0=(-b)/2a. Toute suite vérifiant (1) est alors du
type :


– Cas a, b, c réels
Si ∆>0ou ∆=0, la forme des solutions n'est pas modifiée.
Si ∆<0, (E)a deux racines complexes conjuguées r1=α+iβ et r2=α−iβ
que l'on écrit sous forme trigonométrique r1=ρeiθ et r2=ρe-iθ

Toute suite vérifiant (1) est alors du type :


• Suites récurrentes un+1=f(un)

– Pour étudier une telle suite, on détermine d'abord un intervalle I contenant toutes
les valeurs de la suite.
– Limite éventuelle
Si (un) converge vers l et si f est continue en l, alors f(l)=l.
– Cas f croissante
Si f est croissante sur I, alors la suite (un) est monotone.
La comparaison de u0 et de u1 permet de savoir si elle est croissante ou décroissante.
– Cas f décroissante
Si f est décroissante sur I, alors les suites (u2n) et (u2n+1) sont monotones et de
sens contraire




Fait par LEON
verified badge
Aurelien
Je propose des cours de mathématiques, physique et chimie à domicile pour aider les élèves à améliorer leurs compétences et leur compréhension de ces matières essentielles. Mes cours sont adaptés aux besoins spécifiques de chaque élève, en tenant compte de leur niveau actuel et de leurs objectifs d'apprentissage.

En mathématiques, je couvre un large éventail de sujets, allant des bases comme l'arithmétique et l'algèbre, jusqu'aux concepts plus avancés tels que la géométrie, les fonctions, les probabilités et les statistiques. J'utilise des méthodes pédagogiques interactives pour rendre les mathématiques plus accessibles et intéressantes pour les élèves, en utilisant des exemples concrets et des exercices pratiques.

En physique, j'enseigne les principes fondamentaux de la matière, tels que la cinématique, l'électricité, le magnétisme et l'optique. Je m'assure que les élèves comprennent les concepts théoriques tout en leur fournissant des expériences pratiques pour renforcer leur compréhension.

Je suis passionné par l'enseignement et j'ai une approche patiente et encourageante. Je m'efforce de créer un environnement d'apprentissage positif où les élèves se sentent à l'aise pour poser des questions et explorer les sujets en profondeur. Mon objectif est d'aider les élèves à développer une confiance en eux et à acquérir des compétences qui leur seront utiles tout au long de leur parcours scolaire.

Si vous cherchez un tuteur expérimenté et dévoué pour aider votre enfant à réussir en mathématiques et en physique, n'hésitez pas à me contacter. Je serais ravi de discuter de vos besoins spécifiques et de trouver la meilleure approche pour aider votre enfant à atteindre ses objectifs académiques.
Garantie Le-Bon-Prof
favorite button
message icon
Contacter Diane