facebook
favorite button
member since icon
Since November 2025
Instructor since November 2025
ICT, Computer Science, and Programming Made Easy for ALL.
course price icon
From 18.26 Fr /h
arrow icon
Is your coding class leaving you in the dust? You're not alone. Computer science concepts can be tricky, but they don't have to be.

I specialize in transforming confusion into clarity. With 5+ years of professional coding and 3+ years of dedicated teaching experience, I have a knack for breaking down complex topics into simple, understandable steps.

With me, you will:

· Demystify Tough Topics: Understand the "why" behind algorithms, object-oriented programming, and more.
· Learn at Your Pace: Get patient, one-on-one support tailored to your specific questions and learning style.
· Gain Unshakable Confidence: Turn your weakest subject into your greatest strength and ace your exams.

Don't let one confusing class hold you back. Let's unlock your potential together.
Extra information
All you need is a laptop and together we will make it your biggest asset.
Location
green drop pin icon
|
Use Ctrl + wheel to zoom!
zoom in iconzoom out icon
location type icon
At student's location :
  • Around Douala, Cameroon
About Me
Are you ready to learn from a tutor who lives and breathes technology?

· Proven Industry Expertise: I hold a BSc in Computer Science and have spent 5+ years as a professional software developer, writing code used by real people. This means you learn the most relevant and up-to-date practices.
· Passionate & Experienced Teacher: For over 3 years, I've specialized in one-on-one tutoring, developing the unique ability to explain complex concepts in a simple, intuitive, and memorable way.
· A Practical Learning Journey: My lessons go beyond exam preparation. I focus on building a deep understanding and problem-solving skills that will serve you in academic and in your future tech career.

Move beyond memorization. Let's engineer your success.
Education
University of Buea, BSc in Computer Science, 2019
Google program, Google Summer of Code (as a Student), 2019
Google program, Google Summer of Code (as a Mentor), 2020.
Experience / Qualifications
Software Developer: 5+ years
Scrum Master: 3+ years
Teacher / Lecturer: 3+ years
Technical Writer: 2+ years
Technology Manager: 2+ years
Age
Children (7-12 years old)
Teenagers (13-17 years old)
Adults (18-64 years old)
Seniors (65+ years old)
Student level
Beginner
Intermediate
Advanced
Duration
60 minutes
120 minutes
The class is taught in
English
French
Availability of a typical week
(GMT -05:00)
New York
at home icon
At student's home
Mon
Tue
Wed
Thu
Fri
Sat
Sun
00-04
04-08
08-12
12-16
16-20
20-24
Similar classes
arrow icon previousarrow icon next
verified badge
Léon
Digital suites courses

I - General
A numeric sequence is an application from N to R.
• Bounded sequence
A sequence (Un) is bounded if there exists a real A such that, for all n, Un ≤ A. We say that A is an upper bound of the series.
A sequence (Un) is reduced if there exists a real number B such that, for all n, B ≤ one. One says
that B is a lower bound of the sequence.
A sequence is said to be bounded if it is both increased and reduced, that is to say if it
exists M such that | Un | ≤ M for all n.

• Convergent suite

The sequence (Un) is convergent towards l ∈ R if:
∀ε> 0 ∃n0 ∈ N ∀n ≥ n0 | un − l | ≤ ε.
A sequence which is not convergent is said to be divergent.
When it exists, the limit of a sequence is unique.
The deletion of a finite number of terms does not modify the nature of the sequence, nor its possible limit.
Any convergent sequence is bounded. An unbounded sequence cannot therefore be convergent.

• Infinite limits

We say that the following (un) diverges

Towards + ∞ if: ∀A> 0 ∃n0∈N ∀n ≥ n0 Un≥A
Towards −∞ if: ∀A> 0 ∃n0∈N ∀n≤ n0 Un≤A.

• Known limitations

For k> 1, α> 0, β> 0


II Operations on suites

• Algebraic operations

If (un) and (vn) converge towards l and l ', then the sequences (un + vn), (λun) and (unvn) respectively converge towards l + l', ll and ll '.

If (un) tends to 0 and if (vn) is bounded, then the sequence (unvn) tends to 0.

• Order relation

If (un) and (vn) are convergent sequences such that we have a ≤ vn for n≥n0,
then we have:
Attention, no analogous theorem for strict inequalities.

• Framing theorem

If, from a certain rank, un ≤xn≤ vn and if (un) and (vn) converge towards the
same limit l, then the sequence (xn) is convergent towards l.


III monotonous suites

• Definitions

The sequence (un) is increasing if un + 1≥un for all n;
decreasing if un + 1≤un for all n;
stationary if un + 1 = one for all n.

• Convergence

Any sequence of increasing and increasing reals converges.
Any decreasing and underestimating sequence of reals converges.
If a sequence is increasing and not bounded, it diverges towards + ∞.

• Adjacent suites

The sequences (un) and (vn) are adjacent if:
(a) is increasing; (vn) is decreasing;

If two sequences are adjacent, they converge and have the same limit.

If (un) increasing, (vn) decreasing and un≤vn for all n, then they converge to
l1 and l2. It remains to show that l1 = l2 so that they are adjacent.

IV Extracted suites

• Definition and properties

- The sequence (vn) is said to be extracted from the sequence (un) if there exists a map φ of N
in N, strictly increasing, such that vn = uφ (n).
We also say that (vn) is a subsequence of (un).
- If (un) converges to l, any subsequence also converges to l.

If sequences extracted from (un) all converge to the same limit l, we can conclude that (un) converges to l if all un is a term of one of the extracted sequences studied.
For example, if (u2n) and (u2n + 1) converge to l, then (un) converges to l.

• Bolzano-Weierstrass theorem

From any bounded sequence of reals, we can extract a convergent subsequence.

V Suites de Cauchy

• Definition

A sequence (un) is Cauchy if, for any positive ε, there exists a natural integer n0 for which, whatever the integers p and q greater than or equal to n0, we have | up − uq | <ε.
Be careful, p and q are not related.

• Property

A sequence of real numbers, or of complexes, converges if, and only if, it is
Cauchy




SPECIAL SUITES

I Arithmetic and geometric sequences

• Arithmetic sequences

A sequence (un) is arithmetic of reason r if:

∀ n∈N un + 1 = un + r

General term: un = u0 + nr.

Sum of the first n terms:


• Geometric sequences

A sequence (un) is geometric of reason q ≠ 0 if:

∀ n∈N un + 1 = qun.

General term: un = u0qn

Sum of the first n terms:

II Recurring suites

• Linear recurrent sequences of order 2:

- Such a sequence is determined by a relation of the type:

(1) ∀ n∈N aUn + 2 + bUn + 1 + cUn = 0 with a ≠ 0 and c ≠ 0
and knowledge of the first two terms u0 and u1.
The set of real sequences which satisfy the relation (1) is a vector space
of dimension 2.
We seek a basis by solving the characteristic equation:

ar2 + br + c = 0 (E)
- Complex cases a, b, c
If ∆ ≠ 0, (E) has two distinct roots r1 and r2. Any sequence satisfying (1) is then
like :
where K1 and K2 are constants which we then express as a function of u0 and u1.

If ∆ = 0, (E) has a double root r0 = (- b) / 2a. Any sequence satisfying (1) is then
type:


- Case a, b, c real
If ∆> 0 or ∆ = 0, the form of the solutions is not modified.
If ∆ <0, (E) has two conjugate complex roots r1 = α + iβ and r2 = α − iβ
that we write in trigonometric form r1 = ρeiθ and r2 = ρe-iθ

Any sequence satisfying (1) is then of the type:


• Recurrent sequences un + 1 = f (un)

- To study such a sequence, we first determine an interval I containing all
the following values.
- Possible limit
If (un) converges to l and if f is continuous to l, then f (l) = l.
- Increasing case f
If f is increasing over I, then the sequence (un) is monotonic.
The comparison of u0 and u1 makes it possible to know if it is increasing or decreasing.
- Decreasing case f
If f is decreasing over I, then the sequences (u2n) and (u2n + 1) are monotonic and of
contrary




Made by LEON
message icon
Contact Bomen
repeat students icon
1st lesson is backed
by our
Good-fit Instructor Guarantee
Similar classes
arrow icon previousarrow icon next
verified badge
Léon
Digital suites courses

I - General
A numeric sequence is an application from N to R.
• Bounded sequence
A sequence (Un) is bounded if there exists a real A such that, for all n, Un ≤ A. We say that A is an upper bound of the series.
A sequence (Un) is reduced if there exists a real number B such that, for all n, B ≤ one. One says
that B is a lower bound of the sequence.
A sequence is said to be bounded if it is both increased and reduced, that is to say if it
exists M such that | Un | ≤ M for all n.

• Convergent suite

The sequence (Un) is convergent towards l ∈ R if:
∀ε> 0 ∃n0 ∈ N ∀n ≥ n0 | un − l | ≤ ε.
A sequence which is not convergent is said to be divergent.
When it exists, the limit of a sequence is unique.
The deletion of a finite number of terms does not modify the nature of the sequence, nor its possible limit.
Any convergent sequence is bounded. An unbounded sequence cannot therefore be convergent.

• Infinite limits

We say that the following (un) diverges

Towards + ∞ if: ∀A> 0 ∃n0∈N ∀n ≥ n0 Un≥A
Towards −∞ if: ∀A> 0 ∃n0∈N ∀n≤ n0 Un≤A.

• Known limitations

For k> 1, α> 0, β> 0


II Operations on suites

• Algebraic operations

If (un) and (vn) converge towards l and l ', then the sequences (un + vn), (λun) and (unvn) respectively converge towards l + l', ll and ll '.

If (un) tends to 0 and if (vn) is bounded, then the sequence (unvn) tends to 0.

• Order relation

If (un) and (vn) are convergent sequences such that we have a ≤ vn for n≥n0,
then we have:
Attention, no analogous theorem for strict inequalities.

• Framing theorem

If, from a certain rank, un ≤xn≤ vn and if (un) and (vn) converge towards the
same limit l, then the sequence (xn) is convergent towards l.


III monotonous suites

• Definitions

The sequence (un) is increasing if un + 1≥un for all n;
decreasing if un + 1≤un for all n;
stationary if un + 1 = one for all n.

• Convergence

Any sequence of increasing and increasing reals converges.
Any decreasing and underestimating sequence of reals converges.
If a sequence is increasing and not bounded, it diverges towards + ∞.

• Adjacent suites

The sequences (un) and (vn) are adjacent if:
(a) is increasing; (vn) is decreasing;

If two sequences are adjacent, they converge and have the same limit.

If (un) increasing, (vn) decreasing and un≤vn for all n, then they converge to
l1 and l2. It remains to show that l1 = l2 so that they are adjacent.

IV Extracted suites

• Definition and properties

- The sequence (vn) is said to be extracted from the sequence (un) if there exists a map φ of N
in N, strictly increasing, such that vn = uφ (n).
We also say that (vn) is a subsequence of (un).
- If (un) converges to l, any subsequence also converges to l.

If sequences extracted from (un) all converge to the same limit l, we can conclude that (un) converges to l if all un is a term of one of the extracted sequences studied.
For example, if (u2n) and (u2n + 1) converge to l, then (un) converges to l.

• Bolzano-Weierstrass theorem

From any bounded sequence of reals, we can extract a convergent subsequence.

V Suites de Cauchy

• Definition

A sequence (un) is Cauchy if, for any positive ε, there exists a natural integer n0 for which, whatever the integers p and q greater than or equal to n0, we have | up − uq | <ε.
Be careful, p and q are not related.

• Property

A sequence of real numbers, or of complexes, converges if, and only if, it is
Cauchy




SPECIAL SUITES

I Arithmetic and geometric sequences

• Arithmetic sequences

A sequence (un) is arithmetic of reason r if:

∀ n∈N un + 1 = un + r

General term: un = u0 + nr.

Sum of the first n terms:


• Geometric sequences

A sequence (un) is geometric of reason q ≠ 0 if:

∀ n∈N un + 1 = qun.

General term: un = u0qn

Sum of the first n terms:

II Recurring suites

• Linear recurrent sequences of order 2:

- Such a sequence is determined by a relation of the type:

(1) ∀ n∈N aUn + 2 + bUn + 1 + cUn = 0 with a ≠ 0 and c ≠ 0
and knowledge of the first two terms u0 and u1.
The set of real sequences which satisfy the relation (1) is a vector space
of dimension 2.
We seek a basis by solving the characteristic equation:

ar2 + br + c = 0 (E)
- Complex cases a, b, c
If ∆ ≠ 0, (E) has two distinct roots r1 and r2. Any sequence satisfying (1) is then
like :
where K1 and K2 are constants which we then express as a function of u0 and u1.

If ∆ = 0, (E) has a double root r0 = (- b) / 2a. Any sequence satisfying (1) is then
type:


- Case a, b, c real
If ∆> 0 or ∆ = 0, the form of the solutions is not modified.
If ∆ <0, (E) has two conjugate complex roots r1 = α + iβ and r2 = α − iβ
that we write in trigonometric form r1 = ρeiθ and r2 = ρe-iθ

Any sequence satisfying (1) is then of the type:


• Recurrent sequences un + 1 = f (un)

- To study such a sequence, we first determine an interval I containing all
the following values.
- Possible limit
If (un) converges to l and if f is continuous to l, then f (l) = l.
- Increasing case f
If f is increasing over I, then the sequence (un) is monotonic.
The comparison of u0 and u1 makes it possible to know if it is increasing or decreasing.
- Decreasing case f
If f is decreasing over I, then the sequences (u2n) and (u2n + 1) are monotonic and of
contrary




Made by LEON
Good-fit Instructor Guarantee
favorite button
message icon
Contact Bomen